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ABSTRACT 

We introduce a Pad6 Approximation to the multiperipheral integral 

equation which becomes exact for a factorizable model, but is much easier 

to set up, even without simplifying kinematic approximations. We then 

apply this to a dual multiperipheral model in which the produced clusters 

are dual to Regge behavior. If we only consider uncrossed loops (in the 

usual quark-duality sense), the requirement that the resulting output Reggeon 

be consistent with the input leads to two bootstrap conditions, one of which 

is similar to the planar bootstrap of Veneziano, but incorporates certain 

threshold phenomena. If we make the dual-tree approximation for the 

triple-Regge vertex g(t’, t”, t) we obtain a Reggeon intercept cue z 0. 53 and 

a value for g(0, 0, 0) which is in reasonably good agreement with experiment. 

The Pomeron can be calculated by adding in crossed (cylinder) loops and 

again leads to a result which is in reasonable agreement with the data at 

moderate energies. 
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I. INTRODUCTION 

There has recently been considerable interest in a dual-unitarization 

program 1, 2 for calculating strong-interaction parameters. This consists 

of two parts: 

(i) One first does a bootstrap calculation of Reggeons using a (planar) 

amplitude which has exact exchange degeneracy and is unaffected by 

Regge-cut corrections, 3 flxed poles, diffraction and absorption. 

(ii) One then makes a perturbative topological 1/N expansion which 

adds in a Pomeron and its interaction with the Reggeon and with itself. 
4 

Much of the recent work on this program has been concerned with 

part (ii), 
2, 5-8 

although preliminary calculations have been made within 

part (i). 
2, 9-12 

In the present paper we will be mainly concerned with a 

planar bootstrap based on a dual multiperipheral model in which the 

produced clusters are dual to Regge behavior. We will use a Padk approximation 

which is exact for a factorizable model but is much easier to set up, 

particularly if we do not make the usual high-energy approximations. 

Specifically, it enables us to incorporate quite simply certain thresholds 

which play an important part in such models but are usually ignored in 

approximate treatments. 
7, 8, 13 

Our equations lead to two self-consistency conditions in the forward 

direction. One of these is similar to the equation given by Veneziano9 

and both involve the Reggeon trajectory and triple-Reggeon coupling 

g(t’, t”, t). If we make the dual-tree approximation for g we can then 

calculate both the Regge intercept cue and g(0, 0, 0). 
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In Sec. II we review the general multiperipheral planar bootstrap 

approach. In Sec. III we discuss our Pad< approximation to a general 

multiperipheral model. This involves a single-loop graph which is discussed 

in Sec. IV. In Sec. V we write down our bootstrap equations and in Sec. 

VI we write down our results, both in a one-dimensional approximation 

and using our equations directly. In Sec. VII we study the effect of pion 

exchange, which is found to make very little difference in our results; 

it does lead to an Adler zero in the limit m 
2 

lr + 0, however. Fina’lly, 

in Sec. VIII we compare our results for the triple-Reggeon vertex with 

experiment. 

II. THE GENERAL APPROACH 

We will make the usual assumption that for meson processes, 

Reggeons are generated by summing the multiperipheral ladders of Fig. 1 

where the vertical lines are narrow-resonance clusters a of mass 

5. It was argued in ref. 7 that only a single meson cluster, with 

S 
a 

e 0.5 GeV‘ and corresponding to the p, w, E, . . . peaks, is expected 

to be important at the sort of intermediate energies where Reggeons 

play any important role and where duality considerations are expected to 

apply. In a dual multiperipheral model the horizontal lines are linear 

combinations of exchange-degenerate pairs of Regge exchanges a corresponding 

to uncrossed (planar 1 quark-duality diagrams of the type shown in Fig. 2. 

They then correspond to Regge propagators 
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R = e-idtlS4tl 
(2.11 

;I; 

We will assume that SU(3) is exact SO that the p - AZ, K - K 
:* ‘L 

, w - f 

o - f’ pairs are degenerate, with 

a(t) = (YO+Q’t . (2. 21 

All possible quark diagrams have equal weight. 

In order to obtain an additional constraint on our model, we will 

make the assumption that the clusters a are dual in a finite-energy sum 

rule sense to Regge behavior. (See Fig. 3, where the external lines 

could be either Reggeons or particles. 1 This sort of constraint on sums 

of ladder graphs was first used a number of years ago in a pion-exchange 

model and has recently been applied to the dual multiperipheral model. 2, 3, 9 

If r represents the coupling of the cluster to the external lines of Fig. 3 

it leads to a relation of the form 

r = glg2F > (2. 3) 

where F is a purely kinematic factor. Although Eq. (2. 3 ) gives a relation 

between r and gfg2, it should be emphasized that it does not actually 

correspond to replacing Fig. 3(a) by 3(b), as was done in ref. 2. 

The final step in the planar bootstrap is to require that the output 

trajectory and residue function generated by summing Fig. 1 be consistent 

with what goes into Fig. 1 through Eq. (2. 11 and Fig. 3. We shall see 
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that this permits us to determine CI and the triple-Regge vertex, assuming 

that the functional form of the latter is given by the dual-resonance model. 

Once we know the parameters of the Reggeon we can calculate the 

Pomeron by including in the sum of Fig. 1 crossed (nonplanar) loops of 

the type shown in Fig. 4 in addition to the uncrossed loops of Fig. 2. In 

the former case we then have a Reggeon propagator 

R = *se(t) . 

III. A PAL& APPROXIMATION TO THE 
MULTIPERIPHERAL INTEGRAL EQUATION 

Let us consider dill scattering. The problem of summing the 

multiperipheral ladders of Fig. 1 in the forward direction simplifies 

considerably if we take the O(i, 3) partial wave of the absorptive part A 

m 

r21 = 
J- 

dse 
-(X+ ile(s, mn2, mn2) 

4m ’ 
A(s ) 

TI 

(2.4) 

(3.1) 

where 

-Qb, Ti’ T21 
e = 2(-7*)&r2)fX 

-i 
(s - Ti - T21 + (3.2) 

+ 1 (s-7 - 
1 

7 
2 

I2 -4 II + -1 
7 1 7 2 

and A(s) is normalized so that 
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2 
A(S) = a+@, mn , m a21~tot(s) (3.3) 

withA(x, y, z) =x2+y2+z2 - 2(xy + yz + zx). For our purposes m 
2 

TT 

can always be treated as negligible. If we therefore write 

A(A) = (mr2)‘+ ix,,(mrr2, ml,‘) 

Eq. (3.1) reduces to 

J 

m 

A(X) = 
4mT2 

ds s -‘- ‘A(s) , 

which has the form of a Mellin transform. 

For example, the contribution of Fig. l(a) to A(s) is 

V(s) q r-66 -Sal 

and so, from Eq. (3. 5), 

-A -1 Vh)=rsa . 

(3.4) 

(3. 5) 

(3. 6) 

(3.7) 

The sum of Fig. 1 now has the form 

A(X) = $Al(X) + $J~A,(A) + . . (3.8) 

where $iAi corresponds to a ladder with i clusters; we associate a coupling- 

strength parameter 4 with each cluster. In particular, 

$AiW = V(x) (3.9) 
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An [N, M] Padg approximant is then defined in the usual way as the ratio 
14 

hi + 8n2 + . . . + SNn 
[N, M] = 

N 

1 + bdi f $‘d2 + . . . + e”d 
(3.10) 

M 

where n 1’ ... nN, di, . . . dM are chosen so that an expansion of Eq. 

(3. 10) in powers of e agrees with the expansion (3.8) up to terms of order 

eN + M. For example 

[iz 11 = ‘@&X)/D(X) 

where D(X) = i - ti2(U/Al( A) . 

In many situations Eq. (3. 10) converges more rapidly than the original 

sum (3.8). 

In the case of a factorizable multiperipheral model it is simple to 

show that the [i, 11 approximation of Eq. (3.11) is in fact exact. In such 

a model 

@Al(X) = V(X) V(A) 

~2A2(x) = v (X)K(X)v( X) 

Q3A3(X) = v(X)K(A)K(A)v(X) 

(3.11) 

(3. i2) 

(3.13) 

. . . . . . . . . . ..-.... 
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where V(X) represents the external couplings and K(X) the internal loops 

of Fig. 1. (For an explicit example see Appendix A. 1 The series (3.8) 

can now be summed exactly to give 

v ‘(1) 
A(h) = 1 _ K(A) ’ (3.14) 

But this is exactly what we would obtain from Eq. (3. 11) if we take A1 

and A2 from Eq. (3. 13). 

The practical advantage of using the [i, i] Pad; approximation is 

that we only have to evaluate the first two diagrams of Fig. 1 explicitly. 

If we assume that factorization is even approximately valid, as would 

be true with Eq. (2. 3). we can evaluate the contribution of all the others 

by using Eq. (3. 11). 

IV. DUAL BOX GRAPH 

We will now consider Fig. l(b) in more detail. In the forward direction 

we have 

4 ‘AZ(s) = / 
t + 

& dt y4 ,a,y(t) Ix(t) 1 2(a’s )2av5 (s - 4sa’ 

t- 

(4. 1) 

where X is the signature factor, 0 is the usual step function, and 

t* = -+ [ $ 7 (s - 4 sa )“] 2 
(4.2) 
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in the limit of small m 
2 

Ti . 

We see that there are two kinds of threshold phenomena associated 

with A2(s ): 

(a) There is a normal threshold at s = 4s a’ 

Wfy4 naa 
(t) falls off rapidly with t, A2 is negligible below a 

“deferred threshold” s 5 sL. 
13 Bt Suppose, for example, that y4Vaa = e . 

The integrand of Eq. (4. 1) is then negligible for 

It 1 2 T G (B + 2~’ In c’s)-’ 

and so the integral itself is negligible for 1 t+ 1 2 T. (See Fig. 5. ) The 

threshold sL then comes in when I+ 1 GX T. 

To simplify our problem further we will assume that we can replace 

t* by their asymptotic forms for s 2 sL. Eq. (4.1) then reduces to 

s 

0 

02A2W=~ 
-m dt y4,aLu (t) IX(t) ~2(cY’s12a%(s - SL) (4. 3) 

If we take the Mellin transform (3. 5) of Eq. (4. 3) we obtain 

dt 
X+1-Za(t) 

ln our case it will turn out that B is not excessively large, so that sL 

is not much higher than the normal threshold. We will therefore set 

sL 
s 4s 

a (4. 5) 
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To relate yraa to a triple-Regge coupling we will use the usual 

Finite-Mass Sum Rule (FMSR) for the inclusive process T~TT - rrX 

2,(t) 

with 

G(t) = &Y’ rrncr(t)( X(t) 12g(t, t, o)YrT,um 

where & = M2 - t - m 
2 

~ , M is the missing mass, and g is the (Y(YLY 

triple-Reggeon coupling. (See Fig. 6) We will assume that the low M2 

region is dominated by the production of the cluster a, so that, in the 

narrow-resonance approximation, 

do 

dt dM2 
W2-sa) . 

where (dddt), is the usual differential cross section for T~TT + na, which 

is given by 

1 2 z- 

16~s 
2 y =ra (t) IX(f) /2y2rra@(t)(@w2a(t) 

(4. 6) 

(4. 7) 

(4.8) 

(4.9) 

The separation point MO2 will be taken to be midway between s 
a 

and the next cluster above it. If we take both of these to lie on the trajectory 

(2. 2) we then have 
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Mo2Q~ = 1.5-a0 

where 

a’ = (1 - cYO)/Sa. 

From Eqs. (4.6) - (4.9) we now have an expression of the form (2.3) 

where 

Y2 na(Y(t) = g(t, t, O)y ma (OFi 

cr’F1(t) = 
OO 

+ 1 - 2&) 

V. BOOTSTRAP CONDITIONS 

The coupling r in Eq. (3.6) can be related to y2 TllTa by using a nisi 

finite-energy sum rule (FESR) in the forward direction 

J- 

N 
y2 

CT0 + 1 
ds V(s) = COIN TllTa /bo+l) , 

0 

where N is a point between the p and f resonances. From Eqs. (3.6) 

and (5. i) we then have 

r = y2 TTTCY K’)Fo , 

with 

FO = N 
a0 + 1 

ho + 1) . 

(4.10) 

(4.11) 

(5.1) 

(5.2) 

(5.3) 
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To avoid having to pick a specific value for N we could follow the alternative 

procedure of using the heir Lovelace-Veneziano model. This has both 

duality and crossing built in and is approximately consistent with experiment. 

It gives a relation (5. 2) with 

cu’ F 
0 

= r~.(4t)+i) . 

This is the form we will use from now on. 

From Eqs. (3. 11), (3.12), (3.9), (3.7), (4.4), (4. 10) and (5.2), 

we now have 

with 

A(A) = V(A)/D(A) 

V(X) = y2 
TTTra 

(0)FOsa+ ’ , 

D(A) = 1 - i,;, dt H(t) 
A+ 1 - Z@(t) ’ 

and H(t) = g2(t, t, 0) IX(t) 1’ F12(t)(c’sL)2a(t) . 

Eq. (5. 5) has an output pole at A = a if 

D(a) = 0 . 

The corresponding residue is then 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Y2na,r (0) = V(cu)/D’(@) . (5.10) 
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We will require that this output pole be consistent with the input. From 

Eqs. (5.9) and (5.6) we then have 

D’(cr) = FOsa 
-(Y - 1 

Note that the conditions (5.9) and (5.10) are both independent of y 
TIlra 

and are essentially constraints on a and g. 

To have a complete bootstrap we have to know the t dependence 

g(t, t, 0). We will assume a dual-tree model of the Neveu-Schwartz 

type, which has no tachyon on the p - f trajectory. This gives 3. 10, 

g’(t, t, 0) IX(t) I2 = 2 
NE I%,) 2r2(’ - &l) 

r (a0 + i - 24)) 

(5.11) 

of 

12 

(5.12) 

where N is the number of quarks. Since we are assuming SU(3) we have 

N = 3. The above equations are now sufficient to determine all the parameters 

in our model. 
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V. RESULTS 

Eq. (5. 7) involves a non-elementary integral. The integrand falls 

off fairly rapidly with t, however, and SO we will approximate H by an 

exponential 

H(t)NH e 
2ct 

0 (6. 1) 

with Ho and c adjusted so that the approximation is exact at t = 0 and 

t =-$ kYo/ d ). The results are not sensitive to this prescription. They 

are not very different, for example, if we adjust Ho and c so that the 

value and derivative are exact at t = 0. 

A. The One-Dimensional Approximation 

Before proceeding to a more exact treatment we will make the 

rather crude approximation that the rapid falloff of H(t) permits us to replace 

the denominator in the integral of Eq. (5. 7) by its value at t = 0. We then 

have 

A+ 1 k 
A+1 -2~ 0 

with 

kc ’ J- 
O 

i61rF0 H(t) dt . 
-00 

(6. 2) 

(6.3) 

If we now impose the conditions (5.9) and (5.11) and use Eqs. (6. i ), 

(5.8). (5.12). (5.3), (4.11) and (4. 5), we obtain 
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aO = 0.60 , N&iblr = 0.53 . 

These values are close to those obtained by Schaap and Veneziano, 
10 

although we shall see that the g is somewhat smaller than is indicated 

by experiment. It should be emphasized that our calculation gives a 

specific value for a o, rather than just a range, as in ref. 10. 

B. The Reggeon Parameters 

If we do not use the one-dimensional approximation, Eqs. (5.7) 

and (6. 1) give 

D(X) = 1 - 
HO 

-2ca0/ cy’ 
e 

32rra’Fo 
i 

sa 
-e da 

lSL 
?;(A+ 1 - 2ao) 
(Y 

where E1 is the usual exponential integral. Imposing, as before, the 

conditions (5.9) and (5. ii), we obtain 

LyO q 0.53 , N& 16~ = 1.36 . 

These are closer to the experimental values. 

C. The Pomeron Parameters 

As discussed in Sec. II, the Pomeron can be calculated by adding in 

the cylinder loops of Fig. 2. In the forward direction the only effect is 

to make the replacements 

(6.4) 

(6.5) 

(6.6) 

AZ(X) - 2A2W 

or W ) - ZH(t) 

(6.7) 

(6.8) 
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2 
in the vacuum state, since 11 1’ = le-irra(t)j . If we again use Eqs. 

(5.9) and (5. 10) but with (Y + (Ye we obtain 

cuP 
= 0.80, y2 

lWP 
= 1.45 YZTTf . (6.9) 

This is similar to the results obtained in ref. 7. The f itself becomes 

extinct in such a calculation. Our “Pomeron,” of course, is only an 

effective pole which describes the cross section at intermediate energies. 15, II 

To obtain the (bare) Pomeron which describes scattering at higher energies 

we would have to include higher-mass clusters, as discussed in ref. 7. 

VII. PION EXCHANGE 

In the above calculation we have made the assumption that the dominant 

exchanges Q come from the leading (vector -tensor) Reggeon trajectories. 

Because of the small mass of the pion, however, we might expect its 

contribution to be nonnegligible. To estimate it we will continue to use the 

[i, 1 ] Pad& approximation of Eq. (3.11) but include pion exchange in Fig. 

l(b) when we evaluate $J~A,(A). In the vacuum state the only change is 

to make the replacement 

A2 -A2 
R+* = A2+AZr’ (7.1) 

with Azn given by Fig. 7, which gives 
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where Q(t) is an off-shell factor. We will take r e 50, which corresponds 

to a p width of 0.15 GeV if we assume that Eq. (3. 6) is given by the 

Lovelace-Veneziano model. 

For simplicity we will assume an elementary pion and make two 

different assumptions for Q. 

(i) With Q = 1, Eqs. (7. 2), (4. 2) and (3. 5) give 

$2*2T(k) = yz - r’(X) ‘a 
-A - 2 

32n3 rev 2x+1 

The conditions (5. 9) and (5. 11) now give 

aO 
= 0.54 ) Ng2116rr = 1.13 . 

(ii) With the rather strong off-shell factor 17 

Q(t) = (1 - t/s,)’ 

Eqs. (7. 2), (4. 2) and (3. 5) give 

r2 r’(X) ‘a 
-A - 2 

Q’A,“(x) = - - 
16rr3 reh) Xfl - 

(7.2) 

(7.3) 

(7.4) 

(7. 5) 

(7. 6) 
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The conditions (5.9) and (5.11) now give 

@O 
= 0.54, Ng2/i6rr = 0.82. 

The factor (7.5) probably exaggerates the large 1 t 1 behavior, however. 

We conclude that pion exchange has very little effect on co and does 

not significantly lower g2, especially with Q = 1. 

Adler Zero: Although pion exchange does not affect our planar 

bootstrap in any important way it should perhaps be mentioned in passing 

that it can be dominant for certain effects. For example we see from 

Eq. (7. 3) that AZH(~) -OJ as A- 0. From Eqs. (3. 12) and (3. 11) this 

in turn means that A(X= 0) = 0. But from Eq. (3. 5) 

: A(A = 0) = i 2 c-j+= ;T(s = 0) 

T 

where T(s) is the forward ~l~l amplitude and where we have used the fact 

that it satisfies a dispersion relation. But then 

T(s = 0) = 0, 

(7.7) 

(7.8) 

which is just the Adler zero in the limit of zero pion mass, 
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VIII. COMPARISON WITH EXPERIMENT 

Our calculated rug is very close to the experimental value. In principle, 

g can be extracted from an inclusive process a + b - c + X in the triple-Regge 

region, where the cross section is related to the absorptive part of Fig. 8. 

In practice, however, it is difficult to isolate the desired vertex. We 

will consider three different processes. 

A. Chan et al. 
2 

isolated the g vertex in K p - X-p by summing only 

over resonances in X-, using semi-local duality, so i = j = k = f - w. 

For s = 20 GeV2 , M2 = 2.15 GeV’, t = -0. 1 GeV2, this gives 

do//t dM2 = 0.30 + 0.06 mb/GeV4 . 

In terms of our notation, the same cross section is given by 

do 

dt dMZ 

where 

G 1 2 
= zyppcr ZY KKa sin 1~a LYQW 

(8. 1) 

(8. 2) 

(8.3) 

if we approximate z by its value at t = 0. Now the experimental 

hp - “ppL which is dominated by o exchange, giaes y2 
2 

PPO 
=Y 

PPff 
= 83.8 

(in GeV units 1. The quark model gives yKKa = t y and y = z 
lrlra mrce 3 YpplY. 

If we use our result (7.41 we then obtain 
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do/dt dM2 SO.30 mb/ GeV4 , (8.4) 

which agrees quite well with Eq. (8. 1). 

B. Dash analyzed the process pp - pX in terms of a “Pomeron” P 

with CY 
P 

= 0. 85, which is similar to the one obtained in Eq. (6. 9). i5 

He assumed that it was dominated by Fig. 8 with ijk = lrrrP and PPP and 

obtained 

Cppp(0) 1~ 2000 (GeV units) . (8. 5) 

We can calculate “,,, in terms of g by using the result (6.9) and assuming 

the sort of generalized f/P universality 
18 

discussed in ref. 7, which 

gave a coupling ratio 

CZ-Ly 

Y lu 
XYP XYf 

= (SR/Sa) (8.6) 

where dr 
R 

1s the mass of the end cluster in the particular multiperipheral 

ladder sum which gives rise to our Regge couplings, and x and y could 

be either particles or Reggeons. If we apply Eq. (8.6) to all the vertices 

of Fig. 8, 19 using the fact that the end clusters are nucleons in the case 

of the proton vertices and particles with mass u m 
P 

at the triple-Regge 

vertex, we obtain from Eqs. (8.3) and (7.4) 

~ppp(0) = 2691 (GeV units) . (8. 7 1 
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This is slightly larger than the value in Eq. (8. 51, but we must remember 

that our calculated 1y 
15 

P 
is smaller than the one assumed by Dash. 

C. 
0 In the case of K-p - K X we have i = j = p - A2 and k = P. If 

we again apply our generalized f/P universality (8.6) to the vertices 

involving P we can calculate the coupling E.. 
yk’ 

If we approximate this 

by its value at t = 0 we obtain 

du/dt dM2 = 0.21 mb/GeV4 (8.8) 

for s = 16 GeV’ , M2 = 2.8 and t = -0.1 GeV’. The corresponding experimental 

value is 

du/dt dM2 = 0.33 mb/GeV4 . (8.9 ) 

A possible explanation for the above discrepancy is the fact that 

we have only included the multiperipheral component (PM) and have neglected 

the diffractive part of the Pomeron (PD). The latter was found to be 

quantitatively important in ref. 7 for pp scattering, even though it can be 

argued to be less important for the PPP coupling considered in (B). 
20 

We 

can estimate its contribution by using the fact that f/P universality applies 

separately to PM and PD. 2o This in turn means that the PD/ P M coupling 

ratio r should itself be approximately universal, i. e., independent of the 

process involved. In ref. 7 it was found to be r = L/ yzpp$ ‘3: 62.9/ 110 

for pp scattering. We must therefore multiply Eq. (8.8) by (1 + r) if 
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we wish to include PD as well as P M’ 
We then obtain 

du/dt dMZ r 0.33 mb.GeV4 . (8.10’ 

IX. CONCLUSION 

We have used a Pad; approximation to a dual multiperipheral model 

and the dual-tree approximation for the triple-Reggeon vertex g. We 

then 

(a) Made a self-consistent calculation of a0 and g2, which are in 

reasonable agreement with experiment. 

(b) Calculated reasonable values for the trajectory intercept and 

residue function of the effective Pomeron which describes scattering and 

inclusive processes at intermediate energies. 

(c) Included the effect of pion exchange and found that it does not 

change the planar bootstrap of LY 0 
and g‘ in any substantial way. 

Further calculations might involve 

(i) Evaluating the integrals (4. 1) and (3. 5) more accurately. A direct 

inverse Mellin transform of Eq. (3.11) might then be expected to give a 

detailed picture of the behavior of the cross section both in the case of the 

Reggeon, and in the case of the Pomeron if we make the replacement (6.7). 

(ii) Going away from the forward direction. This may tell us something 

about the t dependence of g and a(t). It may be possible to obtain another 
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constraint on our equations by taking advantage of the fact that a parameter 

like cy’ is needed to fix the energy scale of the problem. 
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APPENDIX. EXAMPLE OF A FACTORIZABLE MODEL 

We will illustrate Eq. (3.13) by considering a simple approximation 

to the Amati-Bertocchi-Fubini-Stanghellini-Tonin equation. 
21 

In the 

forward direction this has the form 
22 

i 
0 

T2) + 
16rr3(h + 1) / 

T g(T ‘T ) (A. 2 A 1’ 2 
-m 

where xkand Fjkare off-shell versions of the projection (3. 1) of A and V. 

Our approximation is to replace Eq. (3.2) by 23 

e- Ns, T1. T2) 1 
-N sc-T,,‘(-T2)+(s - r,)% - q* 

From Eq. (3.6 ) we then have 

yhi, T2) = WA(ri)WA(T2) 

where 

wp = I-+ 1 sa(-T)f/(sa - 7) x+1 1 

(A. 2) 

(A.3) 

(A.41 

Explicit calculations have shown that the resulting solution of Eq. (A. 1) 

is good to within about 10% for relevant values of the input parameters. 23 

If we now iterate Eq. (A. 1), using Eq. (A. 3). we have 

xx’y T2) = w (T )w (T )+w,(T~)K(X)W (7 ) 
x1 A2 A 2 

+ w,(~~)K(X)K(Xhv~kr~) + . . . (A. 5) 
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where 

K(A) = 
1 

16rr3(A + 1) 
> 

2 WA2(T) . (A. 6) 
- T 

If we then use Eq. (3.4) we see that Eq. (A. 5) reduces to the series (3.8), 

where the terms are given by Eq. (3.13) with 

A+1 
v(A) = m w (m TT A TT 2, . (A. 7) 
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Fig. 1: 

Fig. 2: 

Fig. 3: 

Fig. 4: 

Fig. 5: 

Fig. 6: 

Fig. 7: 

Fig. 8: 

FIGURE CAPTIONS 

The absorptive part for a multiperipheral cluster model. 

Uncrossed (planar) quark-duality diagram. 

Average duality relation between cluster (a) and Reggeon (b). 

Nonplanar (cylinder) quark-duality diagram with crossed 

and uncrossed loops. 

Integration range in the integral of Eq. (4. 1). 

Finite-mass sum rule for ~lr - nX relating the cluster- 

production and triple-Regge regions. 

Box graph with pion exchange. 

A triple-Regge graph which contributes to the cross section 

for a + b + c + X in the triple-Regge region. 
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